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Abstract. The development of robust and efficient algorithms for both steady-state simulations
and fully-implicit time integration of the Navier–Stokes equations is an active research topic. To
be effective, the linear subproblems generated by these methods require solution techniques that
exhibit robust and rapid convergence. In particular, they should be insensitive to parameters in
the problem such as mesh size, time step, and Reynolds number. In this context, we explore a
parallel preconditioner based on a block factorization of the coefficient matrix generated in an Oseen
nonlinear iteration for the primitive variable formulation of the system. The key to this preconditioner
is the approximation of a certain Schur complement operator by a technique first proposed by Kay,
Loghin, and Wathen [26] and Silvester, Elman, Kay, and Wathen [46]. The resulting operator entails
subsidiary computations (solutions of pressure Poisson and convection–diffusion subproblems) that
are similar to those required for decoupled solution methods; however, in this case these solutions
are applied as preconditioners to the coupled Oseen system. One important aspect of this approach
is that the convection–diffusion and Poisson subproblems are significantly easier to solve than the
entire coupled system, and a solver can be built using tools developed for the subproblems. In
this paper, we apply smoothed aggregation algebraic multigrid to both subproblems. Previous work
has focused on demonstrating the optimality of these preconditioners with respect to mesh size
on serial, two-dimensional, steady-state computations employing geometric multi-grid methods; we
focus on extending these methods to large-scale, parallel, three-dimensional, transient and steady-
state simulations employing algebraic multigrid (AMG) methods. Our results display nearly optimal
convergence rates for steady-state solutions as well as for transient solutions over a wide range of
CFL numbers on the two-dimensional and three-dimensional lid-driven cavity problem.

1. Introduction. Recently, the development of efficient iterative methods for
the fully-implicit solution of the Navier–Stokes equations has seen considerable ac-
tivity. Significant increases in computing power due to large-scale parallel systems
coupled with a decade of work on efficient parallel CFD algorithms (e.g., [16], [29],
[43], [48]) have now begun to make large-scale implicit calculations tractable in time
frames that are consistent with engineering analysis and scientific exploration. Fur-
ther, an enhanced need to model stiff nonlinear multiple-time-scale PDE systems such
as the Navier–Stokes equations coupled with additional transport/reaction physics has
increased interest in fully-implicit solution techniques.

The use of fully-implicit solvers allows the time stepping algorithm to resolve the
appropriate time scales of interest (the dynamical modes) as opposed to the much
stiffer short time scale physics [2], [30]. The ability to produce a stable integrator
for large time steps can also be employed in a nontime-accurate mode within pseudo-
transient methods [9], [28]. Further, similar iterative method components can often
be utilized in direct-to-steady-state solution methods for appropriate applications.

The robustness and versatility of the fully-implicit schemes, however, come with
a significant cost. These methods place a heavy burden on the development of robust
nonlinear and linear solution methods for the large-scale systems produced at each
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time step. For this reason many solvers have relied on decoupled solution strategies.
Often, transient schemes combine semi-implicit methods with fractional-step (oper-
ator splitting) approaches or use fully-decoupled solution strategies. In these cases,
the motivation is to reduce memory usage and to produce a simplified equation set
for which efficient solution strategies already exist. Unfortunately, these simplifica-
tions place significant limitations on the broad applicability of these methods. For
example, fractional-step methods such as pressure projection [1], [6], [14] and operator
splitting [36] require time step limitations based on the explicit part of the time inte-
gration process as well as on the stability and accuracy associated with the decoupled
physics [8], [17], [25], [30], [40], [41], [51]. This restriction can severely limit the step
size, and direct-to-steady-state simulations with these methods are not possible.

Fully-decoupled solution strategies (e.g., the SIMPLE [38], SIMPLER [37], and
PISO [23] class of methods) use a successive substitution (or Picard) iteration to sim-
plify the coupled systems of equations. Nonlinearities at each time step are resolved
by an outer nonlinear iteration. Unfortunately, while this technique should improve
time step limitations, steps are frequently reduced to facilitate the nonlinear iteration.
Convergence of these decoupled methods can often be problematic. In particular, the
nonlinear iteration has only a linear rate of convergence and in practice can often ex-
hibit very slow convergence. In addition, since all the equations have been decoupled
artificially, this strategy can sometimes result in non-convergence for difficult problems
in which the essential coupling of the physics has been violated (see for example [11],
[12], and the references contained therein). The intent of fully-coupling the PDEs in
the time integration and nonlinear solver is to preserve the inherently strong coupling
of the physics with the goal to produce a more robust solution methodology in the
process.

Much of the previous work on parallel fully-coupled solution methods demon-
strate considerable success for the solution of the incompressible Navier–Stokes equa-
tions (e.g., [11], [16], [42], [43]). In these studies, high parallel efficiencies are attained
using preconditioned Krylov methods with additive Schwarz domain decomposition
preconditioning and effective sub-domain solvers based on incomplete factorizations.
While parallel scaling and robustness are encouraging, the algorithmic scaling is non-
optimal since the number of linear iterations increases with increasing problem size
or an increase in the number of sub-domains [16], [43]. Attempts at mitigating this
poor scaling often consider two-level domain decomposition schemes which accelerate
convergence by solving a projected version of the problem on a very coarse grid with
a direct solver. This coarse grid correction is then interpolated to the fine grid and
combined with the more traditional Schwarz preconditioner. These methods exhibit
optimal convergence scaling as demonstrated for coupled solution of Navier–Stokes
and Navier–Stokes with thermal energy transport [16], [44], [55]. The principal draw-
back is that on large three-dimensional problems with many sub-domains, the cost
of the coarse grid direct solver becomes prohibitive, and the method becomes sub-
optimal in terms of CPU time. Therefore true multi-level preconditioning methods,
which can deliver nearly optimal scaling for these coupled solution methods, are still
an open research issue.

The current view towards producing optimal coupled solution techniques for the
incompressible Navier–Stokes equations is based on using preconditioners that approx-
imate the Jacobian (or an approximate Jacobian for a quasi-Newton method) of the
coupled system with some simplified block-partitioned system of equations. These
methods include approximate block LU factorization techniques [7], [13], [26], [47]
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and physics-based preconditioning [31], [39], [62]. When applied to a system of PDEs,
there are many similarities among these preconditioners. They are all motivated by a
“divide and conquer” approach to constructing a preconditioner. The general goal is
to approximately invert separate scalar systems rather than the fully-coupled systems.
This reduction to scalar systems is motivated by the desire to apply a composition
of multi-level solves on the separate equations to precondition the coupled system
effectively.

In this manuscript, we focus on the evaluation of an efficient fully-implicit time
integration and direct-to-steady-state solution method using a parallel coupled solver
for the incompressible Navier–Stokes equations. This solver is based on an Oseen
nonlinear iteration with a multigrid method for the linear subproblems. The Oseen
iteration is a successive substitution approach that retains the pressure velocity cou-
pling and relaxes (by means of the nonlinear iteration) the coupling of the convection
operator (see Section 2). Since part of the Jacobian coupling that is fully utilized
within a Newton scheme is retained, studying the Oseen equations serves as an inter-
mediate step towards the development of a fully-coupled multi-level solution process.
Additionally, preconditioners for the Oseen system can be employed within a New-
ton code. This is particularly natural in the matrix-free Newton-Krylov setting [27].
It is in this context that our study of the Oseen iteration nonlinear solver and the
Kay, Loghin, and Wathen [26] and Silvester, Elman, Kay, and Wathen [46] precondi-
tioner is carried out. Previous work with these methods has demonstrated optimality
with respect to mesh size on serial, two-dimensional, steady-state computations us-
ing geometric multigrid; we focus on extending these methods to large-scale, parallel,
three-dimensional, transient and steady-state simulations with algebraic multi-grid
(AMG) methods.

The remainder of this paper is organized as follows. Section 2 provides background
on the Oseen iteration and the approximate block preconditioners. In Section 3 we
describe in some detail the algebraic multigrid methods that are used for the compo-
nent scalar solvers for the preconditioner systems. Section 4 provides a brief overview
of the MAC discretization of Navier–Stokes equations and the parallel implementa-
tion of the nonlinear and linear solvers. Details of the numerical experiments and
the results of these experiments are described in Section 5. Concluding remarks are
provided in Section 6.

2. Background. We are concerned with the incompressible form of the Navier–
Stokes equations

αut − ν∇2u + (u · grad)u + grad p = f
−div u = 0 in Ω ⊂ R3, (1)

where u satisfies suitable boundary conditions on ∂Ω, say Dirichlet conditions u = g.
The value α = 0 corresponds to the steady-state problem and α = 1 to the transient
case.

Our focus is on solution algorithms for the systems of equations that arise after
linearization of the system (1). We will use a nonlinear iteration derived by lagging
the convection coefficient in the quadratic term (u · grad)u. For the steady-state
problem, this procedure starts with some initial guess u(0) for the velocities and then
computes updated velocities and pressures by solving the Oseen equations

−ν∇2u(k) + (u(k−1) · grad)u(k) + grad p(k) = f
−div u(k) = 0.

(2)
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For transient problems, a strategy of this type can be combined with an implicit
time discretization, see [49], [56]. For example, a variant of the backward Euler
discretization uses a first order time discretization for ut and treats all other terms
implicitly except the nonlinear convection term. The nonlinear term at each time
step is then solved by employing the Oseen iteration described above. This gives the
combined time-stepping strategy with index (m) and Oseen iteration with index (k)
as

u(k)−u(m−1)

∆t − ν∇2u(k) + (u(k−1) · grad)u(k) + grad p(k) = f
−div u(k) = 0.

(3)

At convergence of the Oseen iteration the solution (u(∗), p(∗)) of the nonlinear equation
(3) is then taken as the solution at the next time step (i.e. (u(m), p(m)) = (u(∗), p(∗)).
This iteration can also be used to solve the steady-state problem by integrating in
time until a steady solution is obtained. Customarily, when large time steps are used
(or equivalently, large CFL numbers) and no error control is applied, this scheme is
termed a pseudo-transient method [9], [28].

For both (2) and (3), a stable finite difference or finite volume discretization leads
to a linear system of equations of the form(

F BT

B 0

)(
u
p

)
=
(

f
0

)
, (4)

which must be solved at each step. For the steady problem, the matrix F has block
diagonal form in which each individual diagonal block consists of a discretization of
a convection–diffusion operator

−ν∇2 + (w · grad) , (5)

where w = u(m−1). For the transient problem, the blocks of F represent discretiza-
tions of the operator

1
∆t

I − ν∇2 + (w · grad) , (6)

which arises from implicit time discretization of the time-dependent convection–dif-
fusion equation.

The strategy we employ for solving (4) is derived from the block factorization(
F BT

B 0

)
=
(

I 0
BF−1 I

)(
F BT

0 −S

)
,

where S = BF−1BT is the Schur complement. This implies that(
F BT

B 0

)(
F BT

0 −S

)−1

=
(

I 0
BF−1 I

)
, (7)

which, in turn, suggests a preconditioning strategy for (4). If it were possible to use
the matrix

Q =
(

F BT

0 −S

)
(8)
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as a right-oriented preconditioner, then the preconditioned operator would be the one
given in (7). All the eigenvalues have the value 1, and it can be shown that this
operator contains Jordan blocks of dimension at most 2, and consequently that at
most two iterations of a preconditioned GMRES iteration would be needed to solve
the system [34].

When any preconditioner Q is used in a Krylov subspace iteration, each step
requires the application of Q−1 to a vector. To see the computational issues involved
for the particular choice (8), it is useful to express Q−1 in factored form(

F BT

0 −S

)−1

=
(

F−1 0
0 I

)(
I −BT

0 I

)(
I 0
0 −S−1

)
.

This shows that two nontrivial operations are required to apply Q−1: application of
S−1 to a vector in the discrete pressure space, and application of F−1 to a vector in
the discrete velocity space. These tasks, especially the first one, are too expensive
for a practical computation. However, an effective preconditioner can be derived by
replacing these two operations with inexpensive approximations.

Applying the action of F−1 to a vector v entails solving the discrete convection–
diffusion equation, i.e., solving Fx = v where F is a discrete version of (5) or (6). For
this computation, we will use a multigrid iteration, as outlined in the next section.

The key component for the preconditioner is the availability of an accurate and
inexpensive approximation to the action of the inverse of the Schur complement oper-
ator BF−1BT . Here, we will use a strategy developed in [26] and [46]. To derive it, we
begin with the convection–diffusion operator of (5). (The treatment of the transient
version (6) is identical.) Suppose there is an analogous operator

(−ν∇2 + (w · grad))p

defined on the pressure space. It is not necessary to ascribe any physical meaning to
this operator; it will only be used to construct an algorithm. Suppose in addition that
the convection–diffusion operators formally commute with the gradient operator, i.e.,

(−ν∇2 + (w · grad))grad = grad(−ν∇2 + (w · grad))p . (9)

A discrete version of this (posited) relation, using the discrete versions of the operators
given in (4) together with a discretization Fp of the convection–diffusion operator on
the pressure space, is

FBT = BT Fp . (10)

A straightforward algebraic manipulation then gives

BF−1BT = (BBT )F−1
p . (11)

In reality, the formal relation (9) is not valid except in special cases (such as
constant w). However, we can still take the matrix on the right side of (11) as an
approximation to the Schur complement, leading to the preconditioner

Q =
(

F BT

0 −Ŝ

)
(12)

for (4), where Ŝ = (BBT )F−1
p . Application of Ŝ−1 to a vector is now a relatively

straightforward operation, entailing application of the action of (BBT )−1 (i.e., solving
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a system of equations with coefficient matrix BBT ), followed by a matrix-vector
product by Fp. The matrix BBT is essentially a scaled discrete Laplacian, and there
are many approaches for solving the required systems. We will again use algebraic
multigrid methods for these computations.1

To implement this methodology, it is necessary to construct the matrix Fp, i.e., a
discrete convection–diffusion operator on the pressure space. This requires a conven-
tion for specifying boundary conditions associated with this operator. Our strategy
has been to choose conditions that ensure that the resulting operator is elliptic over
the discrete pressure space [10]. When (1) is posed with Dirichlet boundary condi-
tions, Fp is defined using Neumann boundary conditions; if a component ∂Ω is an
outflow boundary, then Dirichlet conditions would be used for Fp. (Similar conditions
also apply to Ap if that needs to be defined.) The issues involved here appear to be
essentially the same as what is required for the pressure Poisson equation in other
settings [15, Sect. 3.8.2]. Note, however, that here the choice of pressure boundary
conditions only affects the algorithm used to solve the discrete equations (i.e., the
definition of the preconditioner) and is unrelated to the accuracy of the underlying
solution method.

We highlight some aspects of using the preconditioner of (12). Considerable
empirical evidence for two-dimensional problems indicates that it is effective, lead-
ing to convergence rates that are independent of mesh size, only mildly dependent
on Reynolds numbers for steady problems, and essentially independent of Reynolds
numbers in the transient case [13], [26], [46]. A proof that convergence rates are inde-
pendent of the mesh is given in [32]. As observed above, each step of a Krylov subspace
iteration then requires a Poisson solve on the pressure space and a convection–diffusion
solve on the velocity space. Both of these operations can be performed or approxi-
mated using multigrid methods.

3. Multigrid. It is well known that multigrid methods are among the most ef-
fective methods for solving discrete partial differential equations, see e.g, [5], [19],
[53]. In this study we employ a particular multilevel method called an algebraic
multigrid method (AMG). These methods require no mesh (or geometric) information
and therefore are attractive for solving problems in complex domains discretized with
unstructured meshes. Although multigrid methods have been developed for the in-
compressible Navier–Stokes equations (see, for example, [4], [63]), there has been only
a modest amount of work on using algebraic multigrid in this setting. One reason for
this is the strong coupling inherent in the complex block structure of the discretized
governing PDE system as described in Section 2. A key advantage of the block pre-
conditioning approach is that the resulting component block solvers require separate
solutions of equations with coefficient matrices F (a discrete convection–diffusion op-
erator) and Ap (a discrete Laplacian), each of which is amenable to solution by AMG.

1This derivation is essentially a full description of the preconditioner for the finite-difference
discretization that we will use in Section 5. A more careful derivation, applicable in particular to
finite element methods, leads to the approximation

BF−1BT ≈ (BM−1
v BT )F−1

p Mp = ApF−1
p Mp

where Mv and Mp are the mass matrices corresponding to the L2 representation of the finite element

bases. Ap = BM−1
v BT represents a scaled discrete Laplacian operator on the pressure space, and

this leads to the more general definition Ŝ = ApF−1
p Mp. We will not discuss this more general

formulation here. It introduces no serious computational difficulties but enables an extension of
this approach to handle stable finite element discretizations; see [26] and [46] for details. For finite
differences on a uniform grid of width h, Mp = h2I and BBT = ApMp.
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We begin by briefly recalling the philosophy behind traditional (geometric) multi-
grid methods. The basic idea is to capture errors by utilizing multiple resolutions in
an iterative scheme. High energy (or oscillatory) components are effectively reduced
through a simple smoothing procedure, while low energy (or smooth) components
are tackled using an auxiliary lower resolution version of the problem (coarse grid).
The idea is applied recursively on the next coarser level. In standard multigrid, this
is accomplished by generating a hierarchy of meshes, Gk, corresponding to differing
resolutions. Grid transfer (i.e., interpolation and restriction) operators are defined to
move data (residuals and corrections) between meshes, and discretizations are con-
structed on all the meshes. On coarse meshes, it is common to employ the same
discretization technique (often the same subroutine) that is used on the finest mesh.
However, it is also possible to project the fine grid operator algebraically via

Ak+1 = PT
k AkPk (13)

where Pk interpolates a solution from grid Gk to Gk+1, PT
k restricts a solution from

grid Gk+1 to Gk, and Ak is the discretization on Gk. In this paper, we only use
restriction which is the transpose of interpolation. However, this does not have to
be the case and for highly nonsymmetric problems it is often more appropriate to
consider alternatives. This is planned for future work. A sample multilevel iteration
is given in Figure 1 to solve

A1u1 = b1. (14)

// Solve Akuk = bk

procedure multilevel(Ak, bk, uk, k)
uk = Sk(Ak, bk, uk);
if ( k 6= Nlevel)

rk = bk −Akuk ;
Ak+1 = P T

k AkPk;
uk+1 = 0;
multilevel(Ak+1, P T

k rk, uk+1, k + 1);
uk = uk + Pkuk+1;
uk = Sk(Ak, bk, uk);

Fig. 1. Multigrid V cycle consisting of ‘Nlevel’ grids to solve A1u1 = b1.

To specify the method fully, the smoothers Sk and the grid transfers Pk must be
defined for each level k.. The key to fast convergence is the complementary nature
of these two operators. That is, errors not reduced by Sk must be well interpolated
by Pk. In our implementation, we employ a standard Gauss–Seidel smoother for
the Sk when solving the Poisson operator. For the convection–diffusion operator, we
present experiments with a few different choices. These experiments are discussed in
Section 5.

An algebraic multigrid algorithm has the same structure as a standard multigrid
algorithm (e.g., Figure 1). The main difference is that no grid hierarchy is supplied
and so a notion of a mesh must be developed from matrix data. This mesh must then
be coarsened, and finally grid transfer operators Pk must be deduced, from purely
algebraic principles. We will use one particular approach, called smoothed aggrega-
tion. This is an algebraic multigrid technique for determining the operators Pk that
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interpolate the aggregated graph to its refinement given only the n× n discretization
matrices Ak. We give a brief description of a simplified smoothed aggregation scheme
for scalar partial differential equations. More details can be found in [50], [54], [58],
[59], and [61].

The key feature of AMG methods is that no mesh information is supplied. Instead,
a matrix graph is defined, and this graph effectively occupies the role of the mesh
used in traditional multigrid methods (with the exception that no coordinates are
associated with a matrix graph). Specifically, define the matrix graph

Gk = {Vk, Ek}

with vertices

Vk = {1, 2, . . . n}

and undirected edges

Ek = {(i, j) : i, j ∈ Vk, j ≤ i, Ak(i, j) 6= 0}.

For this discussion, it is assumed that Ak is structurally symmetric with nonzero
diagonal entries. In our notation, (i, j) and (j, i) refer to the same undirected edge.
To produce the ‘next’ mesh within the multigrid hierarchy, Gk must be automatically
coarsened. In smoothed aggregation, Gk is coarsened by grouping or aggregating
neighboring vertices together. Each aggregate will effectively become a mesh point
on the next coarser mesh. Formally, an aggregate corresponds to a set aggk such that

aggp ∩ aggj = Ø p 6= j

and

Vk =
m⋃

j=1

aggj

where m is the total number of aggregates and Ø is the empty set. For details on
aggregation algorithms, we refer the reader to [61] and [54]. In this paper, it is
sufficient to consider an ideal aggregate, aggk, as comprising a single central vertex
and all of its immediate neighbors. In practice, it is not possible to a coarsen a graph
completely with ideal aggregates. This is further discussed at the end of this section.

Using the above aggregates, a simple interpolation operator can be defined cor-
responding to piecewise constants. Specifically, a value at a coarse grid point is in-
terpolated by assigning it to all fine grid vertices within its corresponding aggregate.
This interpolation is referred to as the tentative prolongator and is represented by
an n × m matrix P̃k, where n is the dimension of Ak and m is the total number of
aggregates. Each row of P̃k corresponds to a grid point, and each column corresponds
to an aggregate. Formally, the entries are given by2

P̃k(i, j) =
{

1 if i ∈ aggj

0 if i 6∈ aggj .

2For specific applications such as elasticity problems more complicated tentative prolongators
are defined based on rigid body motions.
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Fig. 2. Three piecewise constant basis functions associated with three aggregates. Each function
corresponds to a single prolongator column.

The main point is that this simple prolongator is easily constructed without geometric
information. Unfortunately, however, using P̃k within a multigrid algorithm gives rise
to suboptimal (not mesh independent) convergence. Instead, a more robust method
is realized by smoothing the piecewise constant basis functions.

The main idea of smoothed aggregation is to smooth the basis functions (i.e.,
the matrix columns) and thereby lower the energy (i.e., essentially reduce ‖Pk‖Ak

)
associated with P̃k. We omit the theory details and refer the interested reader to the
smoothed aggregation references. Specifically, a simple damped Jacobi iteration is
applied

Pk = (I − αD−1
k Ak)P̃k (15)

where Dk is the diagonal of Ak, and α is a damping parameter. Typically, α is taken
as 4

3ρ(D−1
k Ak)

where ρ(·) denotes the spectral radius. This smoothing step is critical

to obtaining h-independent multigrid convergence [3], [58]. Figure 2 illustrates the
piecewise constant basis functions (or matrix columns) associated with P̃k. Figure 3
illustrates the effect of smoothing by depicting the basis functions (or matrix columns)
associated with Pk when Ak is a Laplace operator. Intuitively, it should be no surprise
that in this example the multigrid method using piecewise linear interpolation3 is
superior to that using piecewise constant interpolation. It is important to notice
that the aggregates in Figure 2 are ideal aggregates. That is, they are comprised of
a central vertex and its immediate neighbors (i.e., they have a diameter of three).
If the diameter is greater than three, the smoothed basis functions have a region
where they are locally constant (i.e., the hat functions have a plateau). This leads
to slower multigrid convergence due to poorer interpolation properties. When the
diameter is less than three, the leftmost and rightmost smoothed basis functions in
Figure 3 will overlap. This implies that the coarse grid discretization matrix obtained
via PT

k AkPk will have additional nonzeros. This can cause the multigrid iteration
cost to very quickly increase. Though this example is simple, the situation in higher
dimensions and on unstructured grids is identical. In practice, multigrid schemes with
convergence/cost properties similar to the ideal aggregate case are achieved using good
aggregation heuristics that keep the number of nonideal aggregates to a minimum and
prevent nonideal aggregates from becoming too small or large. We refer the reader
to [61] for more details.

The basic idea and most of the theory for smoothed aggregation has been devel-
oped for symmetric positive definite systems. For the nonsymmetric system with co-
efficient matrix F , we make one modification to the algorithm described here. Specifi-
cally, we replace Ak in (15) by the symmetric part of F (i.e., (F +FT )/2) and estimate
the spectral radius of the symmetric part of F . In this way, the smoothing of the pro-
longator maintains a sense of energy minimization. We have found that this procedure

3In general, smoothed aggregation does not reproduce linear interpolation nor is this necessary
to obtain mesh independent convergence.
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Fig. 3. Three smoothed basis functions. Each corresponds to a single prolongator column.

is quite effective when an incomplete LU factorization [24] is used as a smoother. For
the Reynolds numbers that we have considered, the resulting multigrid procedure is
quite efficient. Our numerical results (Section 5) demonstrate convergence for the F
solve within about 25 multigrid iterations. However, for highly convective flows it
should be possible to further improve the multigrid by considering more sophisticated
generalizations of smoothed aggregation to nonsymmetric problems which allow for
different restriction schemes [18], [60].

4. Implementation. For the steady-state Oseen equations in three dimensions,
the structure of the convection-diffusion operator F is a 3× 3 block diagonal matrix
corresponding to the three velocity components [u, v, w]. That is,

F =

 −ν∇2 + w · ∇
−ν∇2 + w · ∇

−ν∇2 + w · ∇

 (16)

where w = [u, v, w]. The matrix BT is a simple gradient operator applied to the
pressure unknowns. A marker-and-cell (MAC) finite difference scheme [20] is used
to discretize the saddle-point linear subproblem [F B; BT 0]. This discretization is
stable and first-order accurate in a discrete H1-norm [35], [64]. All of our experiments
are on a uniform mesh of width h. Pressures are on the cell centers and velocities are
on the cell faces. In two dimensions, we have N2 cells and approximately 3N2 degrees
of freedom. In three dimensions, we have N3 cells and approximately 4N3 degrees of
freedom. The operator Fp needed for the preconditioner is also a convection-diffusion
operator (5) but on the pressure space. Specifically, in three dimensions, the Fp

operator on a pressure vector p corresponds to

Fpp = (−ν∇2 + (w · grad))pp
= −ν(pxx + pyy + pzz) + upx + vpy + wpz.

(17)

The discrete Laplacian term is the usual seven point stencil. Discretization of the con-
vection terms uses velocities at the cell edges. Finally, the operator Ap also required by
the preconditioner is a standard seven point Laplace operator with Neumann bound-
ary conditions. Since this operator is singular, the constant vector is projected out of
the right hand side and the resulting Ap solution. This singularity also makes solution
of the coarse grid equations somewhat more difficult than usual, and we handle the
coarse grid system by iteration.

The implementation of the preconditioned Krylov subspace solution algorithm
was done using the software packages Petra and Trilinos developed at Sandia Na-
tional Laboratories [22, 33]. Petra provides fundamental construction and support
for many basic linear algebra functions and facilitates matrix construction on parallel
distributed machines. Each processor constructs the subset of matrix rows assigned to
it via a static domain decomposition partitioning, and a local matrix-vector product
is defined. The static decomposition was based on a partioning of the square and
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linear solve

nonlinear loop

time loop

u(0) = initial condition or initial guess
p(0) = initial condition or initial guess

form B and Ap and then set up MG for Ap subproblem

for m = 1,Ntimesteps

u(m) = u(m−1), p(m) = p(m−1)

while ||F(u(m),u(m−1), p(m),u(m))|| > εoseen

ulag = u(m)
k

/* Set up Ku(m) = b corresponding to F(u(m),u(m−1), p(m),ulag) = 0 */

form F, Fp and K =
(

F BT

B 0

)
and then set up MG for F subproblem

GMRESR on Ku(m) = b until ||rk||/||r0|| < εsaddle

Saddle Precondition() =
(

F−1 0
0 I

)(
I −BT

0 I

)(
I 0
0 −FpA

−1
p

)
where

A−1
p = CG preconditioned AMG on Laplacian until ||rk||/||r0|| < εA

F−1 = GMRES preconditioned AMG on F until ||rk||/||r0|| < εF

Fig. 4. Implementation Pseudo-code.

cube domain into regular subdomains. For more complex domains this step can be
replaced by a static partitioning tool such as CHACO [21]. Once F and B are defined,
a global matrix-vector product for the saddle point linear system S = [F B; BT 0]
is defined using the matrix-vector products for the individual systems. Petra handles
all the distributed parallel matrix details (e.g. local indices versus global indices,
communication for matrix-vector products, etc.). Construction of the preconditioner
follows in a similar fashion. That is, the individual components are defined and then
grouped together to form the preconditioner. All of the Krylov methods (i.e. those for
the saddle point solve and for the F and Ap subsystems) are supplied by Trilinos [22],
a high-performance parallel solver library that makes available linear and nonlinear
solvers along with several preconditioning options. The multigrid preconditioning for
the subsystems is done by ML [52], a multigrid preconditioning package, which we
access through Trilinos.

Once all of the matrices and matrix-vector products are defined, we can use
Trilinos to solve the incompressible Navier–Stokes equations using our block precon-
ditioner with specific choices of linear solvers for the saddle-point problem and the
convection–diffusion and pressure Poisson subproblems. To solve the saddle-point lin-
ear problem associated with each Oseen iteration, we use GMRESR. GMRESR is a
variation on GMRES proposed by van der Vorst and Vuik [57] allowing the precon-
ditioner to vary at each iteration. For the pressure Poisson problem, Ap, we use CG
preconditioned with algebraic multigrid, and for the convection–diffusion problem, F ,
we use GMRES preconditioned with algebraic multigrid. For transient and pseudo-
transient problems, we use backward Euler for the time-stepping loop. These choices
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Fig. 5. Sample velocity field and pressure field from 2D lid driven cavity. h = 1/128, Re = 100.

are summarized in Figure 4 to solve the nonlinear problem

F(u(m),u(m−1), p(m),u(m)) = 0

at each time step where

F(u(m),u(m−1), p(m),w) =(
αu(m)−u(m−1)

∆t − ν∇2u(m) + (w · grad)u(m) + grad p(m) − f
−div u(m)

)

and α = 1 for transient problems and α = 0 for steady-state problems.

5. Numerical Results. Numerical experiments are performed on the lid driven
cavity problem in two and three dimensions. Specifically, we consider a square region
with unit length sides in two dimensions and a cube with unit length sides in three
dimensions. Velocities are zero on all edges except the top (lid), which has a driving
velocity of one. The two-dimensional lid driven cavity is a well-known benchmark for
fluids problems. It contains many features of harder flows. The three-dimensional
problem is less well studied and is actually a much more difficult problem. Lid driven
cavity flows exhibit unsteady solutions and multiple solutions at high enough Reynolds
numbers. In two dimensions, unsteady solutions appear around Reynolds number
7000 to 10,000. In three dimensions, these unsteady solutions can occur at much lower
Reynolds number, Re < 1000 [45]. Figure 5 shows the velocity field and pressure
field for an example solution to a two-dimensional lid driven cavity problem with
h = 1/128.

Results are presented for both steady-state and transient problems. In all pre-
sented results, the values for εoseen, εsaddle, εF , εA, and NtimeSteps in Figure 4 are
defined as follows. The relative stopping tolerances for the nonlinear and saddle-point
problems are εoseen = 10−5 and εsaddle = 10−2. For experiments using ‘exact’ solu-
tions of the convection–diffusion and pressure Poisson subproblems, we have relative
stopping tolerances εF = εA = 10−10. All time-stepping studies employ backward
Euler and take ten time steps (i.e., NtimeSteps = 10) using a constant time step.
All two-dimensional results were obtained in serial on a DEC Alpha ES40. All three-
dimensional results were obtained on 100 processors of Sandia’s ASCI Red machine.
Each of Red’s compute nodes consists of two Intel Pentium II Xeon Core processors
with a peak performance of 333 MFLOPs each.
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5.1. Steady-State Results. We first explore the performance of the algebraic
multigrid solver for the discrete convection–diffusion equations. Performance on the
simple Poisson subproblems is optimal and well understood. For the convection–
diffusion subproblem Fx = v, we explore two multigrid choices: the smoothing op-
erator and the grid transfer operator. In Table 1, both ILU and symmetric Gauss–
Seidel smoothers are considered within smoothed aggregation multigrid. The ILU and
symmetric Gauss–Seidel smoothers are actually used in conjunction with Schwarz do-
main decomposition ideas. In particular, each processor performs one iteration of the
smoother on the subdomain defined by the matrix partitioning (independent of the
others) and performs communication between smoothing iterations. These subdo-
mains include one level of overlap (i.e., the processor-based subdomains are expanded
by one layer of equations around the subdomain perimeter) though only solution
values from the non-overlapped regions are used in the preconditioner. In the case
of symmetric Gauss–Seidel, we compare using one and four iterations of symmetric
Gauss–Seidel (referred to as 1-Gauss–Seidel and 4-Gauss–Seidel respectively), per-
formed before and after the coarse grid correction on each level of the V-cycle. For
ILU, one ILU sweep is performed before and after the coarse grid correction on each
V-cycle level. Tables 1 and 2 show the average multigrid iteration counts and CPU
times required to solve the convection–diffusion subproblems arising in the block pre-
conditioner. The timings include the entire time within the Krylov solver and the
algebraic multigrid preconditioners. They do not, however, include algebraic multi-
grid setup times. These will be discussed later in this section.

1-Gauss–Seidel 4-Gauss–Seidel ILU
iters AMG time iters AMG time iters AMG time

Re = 20 14 2.89 10 5.37 11 3.95
Re = 50 15 3.06 11 5.53 12 4.03
Re = 100 15 3.40 11 5.96 12 3.96
Re = 200 65 14.1 116* 62.1 12 4.82

Table 1
Smoothed aggregation multigrid performance on 3D steady-state problems corresponding to N =

64 and P = 100. Average times (seconds) and iterations per convection–diffusion subproblem are
given. (*Note: In the Re=200, 4-GS case, some of the convection–diffusion subproblems reached
the maximum number of iterations of 200 without converging.)

Table 2 gives the same information as Table 1, except using unsmoothed aggre-
gation for the grid transfers. This corresponds to simple piecewise-constant interpo-
lation. We see in Table 1 that the symmetric Gauss–Seidel smoother has difficultly
converging when the Reynolds number is too large for the smoothed aggregation
method. This is due to the grid transfers, which are built ignoring nonsymmetric
information. The resulting coarse grid discrete operators (constructed via (13)) can
correspond to unstable discretizations for which the Gauss–Seidel method is diver-
gent. This occurs on the coarsest grid for Re = 200 in Table 1 and helps explain
why four Gauss–Seidel iterations perform worse than a single Gauss–Seidel iteration.
Though unsmoothed aggregation generally gives poorer grid transfers (and non-mesh
independent convergence), the coarse discretization stability problem does not arise.
Thus, in some high Reynolds number cases, unsmoothed aggregation can actually
perform better than smoothed aggregation. We are continuing to explore this is-
sue and are working on combinations of smoothed and unsmoothed aggregation to
handle convection–diffusion flows. For the remainder of the experiments in this pa-
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1-Gauss–Seidel 4-Gauss–Seidel ILU
iters AMG time iters AMG time iters AMG time

Re = 20 45 10.3 27 12.3 32 7.1
Re = 50 53 12.0 30 13.0 36 7.6
Re = 100 64 11.6 35 15.5 43 9.9
Re = 200 76 14.4 37 16.4 49 10.5

Table 2
Unsmoothed aggregation multigrid performance on 3D steady-state problems corresponding to

N = 64 and P = 100. Average times (seconds) and iterations per convection–diffusion subproblem
are given.

per we use smoothed aggregation with ILU smoothing in the solution of the discrete
convection–diffusion equations as it is the most robust and gives good solution times.
For the Poisson problem we use the standard Gauss-Seidel smoother which has been
demonstrated to be effective in many studies [53], [63]

In Table 3 we illustrate the breakdown of time spent within the saddle-point linear
subproblem for a three-dimensional steady-state Re = 100 calculation. In each case

1-Gauss–Seidel 4-Gauss–Seidel ILU
AMG setup 59.4 59.7 59.3
ILU factorization N/A N/A 74.6
matrix-vector products 116.0 623.0 184.0
smoother 424.0 1022.80 630.0
grid transfers 38,6 31.1 30.2
total 638.0 1737.0 978.0

Table 3
Breakdown of the total time spent in various parts of the solution of the saddle-point subproblem

over a complete nonlinear, 3D, steady-state problem corresponding to Re = 100 and N = 64.
Different AMG smoothers are shown for solution of the convection–diffusion subproblem.

the multigrid times for separate solutions of the pressure Poisson and convection–
diffusion subproblems are lumped together. In all cases, one symmetric Gauss–Seidel
iteration is performed before and after the coarse grid correction within each V-cycle
level for the solution of the pressure Poisson subproblem. while results are shown
with three different smoothers for the solution of the convection–diffusion subproblem.
Overall, it is clear that the multigrid setup time is small. The grid transfer time is
also small. Most of the time is spent computing the ILU factorization, applying
the smoother, and performing matrix-vector products (this includes both residual
calculations and within the Krylov solver). For the rest of this paper, we use the
ILU smoother for the convection–diffusion subproblems and one symmetric Gauss–
Seidel iteration before and after the coarse grid correction for the pressure Poisson
subproblem.

We now begin to explore the performance of the block preconditioner. Ta-
ble 4 demonstrates h-independent (i.e., mesh-independent) convergence on the two-
dimensional steady-state problem. This table displays the average number of itera-
tions per linear saddle-point subproblem of the Oseen iteration.

For moderate Reynolds numbers, 10 to 15 algebraic multigrid iterations are re-
quired to reach convergence on the convection–diffusion and pressure Poisson subprob-
lems. In the Re = 1000 example, 15 to 30 iterations were required for convergence in
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the convection–diffusion subproblem. The number of saddle-point problem iterations
is h-independent, which is in agreement with theory [32]. As expected, the number
of iterations grows moderately with increasing Reynolds number.

N 8 16 32 64 128 256
Re = 100 12 14 15 16 16 17
Re = 300 18 22 25 27 27 30
Re = 1000 26 39 44 50 56 57

Table 4
2D steady-state results demonstrating h-independence. Average number of iterations to solve

each linear saddle-point subproblem are shown. The convection–diffusion and pressure Poisson
subproblems are solved exactly.

Table 5 demonstrates h-independence on the three-dimensional steady-state prob-
lem. For the three-dimensional problems in this table, the convection–diffusion and
pressure Poisson subproblems required 10 to 25 algebraic multigrid iterations for con-
vergence to the given tolerance. As mentioned above, nonlinear difficulties for the
three-dimensional lid driven cavity occur at much lower Reynolds numbers than in
the two-dimensional case. In three dimensions, the nonlinear Oseen solver failed to
converge for Reynolds numbers above 200 and converges quite poorly for Reynolds
number 200 (see Tables 8 and 9). We will consider Newton’s method (in conjunction
with Oseen preconditioners) in a future work to address these difficulties.

N 8 16 32 64
Re = 20 8 9 9 10
Re = 100 13 15 17 18
Re = 200 17 20 22 23

Table 5
3D steady-state results demonstrating h-independence. Average number of iterations to solve

each linear saddle-point subproblem are shown. The convection–diffusion and pressure Poisson
subproblems are solved exactly.

In Tables 6–9 we compare steady-state solutions in which the convection–diffusion
and pressure Poisson subproblems are solved exactly and inexactly within the pre-
conditioner. For the exact solutions, the subproblems are solved to a tolerance of
εF = εA = 10−10. (This is how the results for Tables 4–5 were generated.) For the in-
exact solutions, we perform three, five, or seven iterations. All problems in Tables 6–9
were run with N = 64 (producing approximately one million degrees of freedom for
the three-dimensional problems).

Table 6 shows the average number of iterations per linear saddle-point problem
and Table 7 shows the total CPU time to solution in the two-dimensional case. Ta-
bles 8 and 9 show the same information for the three-dimensional case. For moderate
Reynolds numbers, solving the convection–diffusion and pressure Poisson subproblems
inexactly increases the average number of iterations per linear saddle-point problem,
however the total time to solution improves due to the less expensive convection–
diffusion and pressure Poisson solutions. In the Re = 1000 two-dimensional case, the
convection–diffusion problem is much more difficult, and solving it inexactly increases
the total time to solution. This is due to the GMRES/multigrid solver, which ini-
tially converges very slowly and then proceeds quite rapidly to the solution. Thus,
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Ap Exact, Ap 3, Ap 3, Ap 3, Oseen
N = 64 F Exact F Exact F 7 F 5 Steps

Re = 100 16 16 18 20 8
Re = 300 27 27 31 36 11
Re = 1000 56 57 255 290* 19*

Table 6
The average number of iterations per linear saddle-point subproblem are shown for exact vs.

inexact solutions in the 2D steady-state problem. The last column shows the number of nonlinear
iterations required for each solution. (* Note: the “Ap 3, F 5” example took 32 Oseen steps and
reached the maximum 300 saddle-point iterations.)

Ap Exact, Ap 3, Ap 3, Ap 3,
N = 64 F Exact F Exact F 7 F 5

Re = 100 66.5 52.2 44.7 40.3
Re = 300 164.0 130.0 110.0 104.0
Re = 1000 1073 930.0 1675.0 2675.0

Table 7
Total CPU time to solution (in seconds) is shown for exact vs. inexact solutions in the 2D

steady-state problem.

while only approximately thirty iterations are required to obtain a solution, very little
progress is made after just seven iterations. We expect stronger multigrid smoothers
to resolve this difficulty but have not pursued this here.4 It should also be noted
that it may be possible to reuse Krylov vectors from previous convection–diffusion
solutions to accelerate the overall convergence for the current convection–diffusion
subproblem.

Ap Exact, Ap 3, Ap 3, Ap 3, Oseen
N = 64 F Exact F Exact F 7 F 5 Steps
Re = 20 10 11 13 15 6
Re = 100 18 18 23 28 13
Re = 200 23 24 31 37 90

Table 8
Average number of iterations per linear saddle-point subproblem are shown for exact vs. inexact

solutions in the 3D steady-state problem.

In the preceding steady-state examples, the difficulties encountered with large
Reynolds number are largely due to the poor performance of the nonlinear Oseen
iteration. One method of avoiding this difficulty is by introducing time stepping.
In the next section, we examine the performance of the block preconditioner in the
context of transient and pseudo-transient problems.

5.2. Transient Solver Results. In this section, transient solver performance
is demonstrated. In our first set of experiments, a moderate range of CFL numbers
are considered. Our main emphasis is to demonstrate how convergence of the method
is relatively insensitive to CFL number. This implies that artificially small time

4In our case, the ILU method does not smooth certain modes on coarse grids. Modifications to
ILU for multigrid smoothers discussed in [53] may improve the method as well as alternative grid
transfers that better capture non-symmetry.
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Ap Exact, Ap 3, Ap 3, Ap 3,
N = 64 F Exact F Exact F 7 F 5
Re = 20 567.0 495.0 408.0 391.0
Re = 100 2500.0 2045.0 1490.0 1440.0
Re = 200 24,800.0 24,200.0 15,300.0 11,800.0

Table 9
Total CPU time to solution (in seconds) is shown for exact vs. inexact solutions in the 3D

steady-state problem.

increments are not required for the solver. Instead, time steps can be chosen based
entirely on accuracy concerns and the time scales associated with the physics being
resolved.

In all of the tables in this section, ten time steps are performed and averages are
reported within each of the columns. Specifically, “Time” is the average time per step,
“Oseen Steps” indicates the average number of nonlinear steps per time step, “Linear
Solves” denotes the average number of linear saddle-point iterations per Oseen step,
and “Ap” and “F” show the average number of multigrid iterations for each pressure
Poisson, Ap, and convection–diffusion, F , subproblem. Table 10 illustrates perfor-
mance for the case where the convection–diffusion and pressure Poisson subproblems
are solved exactly.

Time Oseen Linear
N = 64 CFL (secs) Steps Solves Ap F

Re = 500 0.1 83.0 2 2 20 2
Re = 500 0.5 85.6 2 2 20 2
Re = 500 1 79.3 2 2 20 2
Re = 500 10 110.0 2 2 20 2
Re = 500 50 92.8 2 2 20 3
Re = 500 100 104.0 3 2 20 3

Table 10
Transient solver results on a 3D problem corresponding to Re = 500 for various CFL numbers.

The columns show total CPU time to solutions (in seconds), the number of Oseen steps required
for convergence of the nonlinear problem, the number of iterations required for convergence in the
linear saddle-point problem and in the pressure Poisson and convection–diffusion subproblems.

We conclude this section with some results for very large CFL numbers. Table 11
illustrates performance for ‘exact’ solution of the convection–diffusion and pressure
Poisson subproblem. These results are intended to be indicative of a pseudo-transient
solver, where time stepping is introduced to improve the nonlinear Oseen iteration,
and very large time steps are chosen to step quickly to steady-state. Ten pseudo-time
steps are taken, and the results given are averaged per time step and per solve as in the
previous table. Once again, good convergence rates are observed for the linear solvers
and the iteration counts are relatively insensitive to CFL numbers. In this case, the
nonlinear Oseen method performs acceptably and solutions are obtained for larger
Reynolds numbers. The physical relevance of these higher Reynolds number solutions
is unclear, as these Reynolds numbers approach regimes where the three-dimensional
lid driven cavity no longer exhibits steady flows. The use of higher Reynolds numbers
in this table and the one that follows is intended to demonstrate that our method
does not preclude solving problems with higher Reynolds numbers when they are
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Time Oseen Linear
N = 64 CFL (secs) Steps Solves Ap F

Re = 500 5000 239.0 5 5 18 5
Re = 500 10000 270.0 5 6 18 6
Re = 500 50000 404.0 6 9 19 8
Re = 1000 5000 212.0 5 5 18 4
Re = 1000 10000 236.0 5 6 18 5
Re = 1000 50000 525.0 7 10 19 9

Table 11
Pseudo-transient solver results on a 3D problem corresponding to Re = 500 and Re = 1000 for

various large CFL numbers. The columns show total CPU time to solutions (in seconds), the number
of Oseen steps required for convergence of the nonlinear problem, the number of iterations required for
convergence in the linear saddle-point problem and in the pressure Poisson and convection–diffusion
subproblems.

appropriate and physically relevant. It should be noted that this Oseen performance is
achieved with very large time steps. However, as progressively larger time increments
are chosen, the Oseen method eventually struggles as in the steady-state case.

Table 12 explores the effects of ‘inexact’ solution of the subproblems. For the
inexact solutions, the convection–diffusion subproblem is ‘solved’ with five iterations,
and the pressure Poisson subproblem is ‘solved’ with three iterations. The last two
columns of the table report the number of iterations required for an exact solution to
the subproblems or the number of iterations specified in an inexact solution.

Exact / Time Oseen Linear
N = 64 Inexact (secs) Steps Solves Ap F

Re = 500 exact 404.0 6 9 19 8
Re = 500 inexact 358.0 6 12 3 5
Re = 1000 exact 525.0 7 10 19 9
Re = 1000 inexact 396.0 7 13 3 5

Table 12
Exact vs. inexact pseudo-transient solver results on a 3D problem corresponding to Re = 500

and Re = 1000 with CFL = 50000. The columns show total CPU time to solutions (in seconds),
the number of Oseen steps required for convergence of the nonlinear problem, and iterations required
for convergence in the linear saddle-point problem. In the exact solution cases, the last two columns
show the number of iterations required for convergence of the pressure Poisson and convection–
diffusion subproblems. In the inexact solution cases, these columns report the number iterations
taken for the subproblems.

Tables 10–12 demonstrate that the multigrid method and the saddle-point pre-
conditioner require very few iterations for these transient computations, and that
the iteration counts are relatively insensitive to the CFL number. Unlike the large
Reynolds number steady-state simulations, good nonlinear convergence is also ob-
tained with the Oseen iteration for the transient and pseudo-transient problems. Thus
a pseudo-transient strategy to obtain steady-state results would appear to mitigate, to
some degree, the relatively slow convergence of the Oseen iteration at higher Reynolds
numbers.

6. Conclusions. The multilevel block preconditioner presented and examined in
this paper has been developed for linear systems arising from the implicit solution of
the incompressible Navier–Stokes equations. The block preconditioner approximates
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the Schur complement (corresponding to pressure unknowns) using a convection–
diffusion operator in the pressure space. This method requires component scalar
block solvers that have similarities to pressure projection schemes and existing de-
coupled solution strategies. These component solves are based on a set of momentum
convection-diffusion equations and a pressure Poisson-type problem. Unlike the pres-
sure projection and fully-decoupled solution methods, the technique considered here
does not suffer from overly restrictive time-step limitations for stability and the es-
sential nonlinear coupling of the velocity and pressure variables can be retained. An
important aspect of this preconditioner is the relative ease of implementation using
existing software kernels.

In this study we have demonstrated mesh independent convergence in 2D and 3D
of the saddle-point solver based on the Kay, Loghin, and Wathen [26] and Silvester,
Elman, Kay, and Wathen [46] block preconditioner. The convergence of the saddle-
point problem for transient problems was demonstrated to be fairly uniform over a
wide range of Reynolds numbers and for CFL conditions (time steps size) that varied
from time-accurate to pseudo-transient solutions. For steady-state problems a mild
degradation is observed with increasing Reynolds number. This study extends the
current literature by providing, three dimensional steady results and both steady and
transient 2D and 3D results. These have been obtained with both serial and parallel
algorithms. Additionally, we have provided new results on the application of paral-
lel smoothed aggregation AMG solvers to the momentum and pressure Poisson-type
component block systems. It should be noted that while our results are for structured
grid problems, the actual solver code does not take advantage of this structure. In
fact the coarse operators that are constructed by our methods would correspond to
an unstructured coarse mesh. This general technique has been demonstrated to be
an effective solver for these systems over a wide range of Reynolds numbers and CFL
conditions.

While the overall results were obtained by employing an Oseen nonlinear iteration
we believe they are more broadly applicable. Specifically this study is intended as a
first step towards applying similar ideas within a more robust nonlinear solver such
as Newton’s method. In a future manuscript we intend to evaluate this technique
as a preconditioner to a Newton-Krylov method and to extend the results to more
complex flow problems and unstructured meshes.
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